Integrating instance-level and attribute-level knowledge into document clustering

نویسندگان

  • Jinlong Wang
  • Shunyao Wu
  • Gang Li
  • Zhe Wei
چکیده

In this paper, we present a document clustering framework incorporating instance-level knowledge in the form of pairwise constraints and attribute-level knowledge in the form of keyphrases. Firstly, we initialize weights based on metric learning with pairwise constraints, then simultaneously learn two kinds of knowledge by combining the distance-based and the constraint-based approaches, finally evaluate and select clustering result based on the degree of users’ satisfaction. The experimental results demonstrate the effectiveness and potential of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Semi-Supervised Clustering Framework Integrating Pairwise Constraints and Attribute Preferences

Both the instance level knowledge and the attribute level knowledge can improve clustering quality, but how to effectively utilize both of them is an essential problem to solve. This paper proposes a wrapper framework for semi-supervised clustering, which aims to gracely integrate both kinds of priori knowledge in the 598 J. L. Wang, S.Y. Wu, C. Wen, G. Li clustering process, the instance level...

متن کامل

Document clustering using graph based document representation with constraints

Document clustering is an unsupervised approach in which a large collection of documents (corpus) is subdivided into smaller, meaningful, identifiable, and verifiable sub-groups (clusters). Meaningful representation of documents and implicitly identifying the patterns, on which this separation is performed, is the challenging part of document clustering. We have proposed a document clustering t...

متن کامل

خوشه‌بندی اسناد مبتنی بر آنتولوژی و رویکرد فازی

Data mining, also known as knowledge discovery in database, is the process to discover unknown knowledge from a large amount of data. Text mining is to apply data mining techniques to extract knowledge from unstructured text. Text clustering is one of important techniques of text mining, which is the unsupervised classification of similar documents into different groups. The most important step...

متن کامل

On the Comparison of Semi-Supervised Hierarchical Clustering Algorithms in Text Mining Tasks

Semi-supervised clustering approaches have emerged as an option for enhancing clustering results. These algorithms use external information to guide the clustering process. In particular, semi-supervised hierarchical clustering approaches have been explored in many fields in the last years. These algorithms provide efficient and personalized hierarchical overviews of datasets. To the best of th...

متن کامل

Clustering Trees with Instance Level Constraints

Constrained clustering investigates how to incorporate domain knowledge in the clustering process. The domain knowledge takes the form of constraints that must hold on the set of clusters. We consider instance level constraints, such as must-link and cannot-link. This type of constraints has been successfully used in popular clustering algorithms, such as k-means and hierarchical agglomerative ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Sci. Inf. Syst.

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2011